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Project objectives and strategy

1. Utilize current Chl-
based approach

Diversity of
phytoplankton from
optical remote sensing

2. Explore the potential
of hyperspectral
approach




1. Chl-based approach

Introduction

® [mportance of the Mediterranean Sea

® (Considered as a small-scale model of the
world ocean (Bethoux et al. 1999)

® |dentified as a “hotspot” for climate change
(MerMex group 2011)

® Recent advancements in the field of remote sensing

® New procedure for correcting ocean color-derived Chl,, (Morel and Gentili 2009)
which is significantly overestimated by standard algorithms

® New algorithms for discriminating phytoplankton groups from ocean color (e.g.
Alvain et al. 2005; Uitz et al. 2006; Bricaud and Ciotti 2006; and many others) and
estimating their contribution to total primary production (Uitz et al. 2008; 2010)

® Objective of the study
® Combining novel approaches with 10-year SeaWiFS time series of Chl,
® To reassess current estimates of total primary production

—

first estimates of group-spec_ific prima




1. Chl-based approach

Method
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3 major phytoplankton groups
®  Micro (diatoms and dinoflagellates)
® Nano (prymnesiophytes)

®  Pico (prokaryotes and pico-
eukaryotes)

From the time series of group-specific
primary production we computed

®  Annual climatology

® Seasonal climatological cycle within
5 ecological regimes (clusters)
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1. Chl-based approach

Seasonal cycle of total primary production
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1. Chl-based approach

Seasonal cycle of group-specific primary production
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1. Chl-based approach

Conclusions
A o  Toul| ® Annual total primary production
- ; can be twice lower than previously
& estimated
— e ® First climatology of phytoplankton

group-specific primary production
in the Mediterranean Sea
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2. Hyperspectral approach

Data
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Optics South Pacific Experiment
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2. Hyperspectral approach

Method

Input dataset

Pioment compbosition Optical measurements
g P (e.8. a(A), Ry (N))

Input dataset

Derivative analysis

Cluster analysis

Cluster analysis
Reference classification y

Similarity analysis
Evaluation of performance




2. Hyperspectral approach

Classification based on pigments and a,,(A)

| BIOSOPE
s 1

® Cluster #1: Upwelling stations with a large
contribution of diatoms

® C(Cluster #2: Stations nearby Marquesas Islands
and EGY stations dominated by
prymnesiophytes

® Cluster #3: Most oligotrophic stations
dominated by pico-eukaryotes and

~cyanobacteria

ified (St21 and EGY5

Stations DP

St01-05, St11, NUK Zea > DVChla

Grouping of the stations based on the ratio of 2
dominant diagnostic pigments to Chl

Classification of the stations based on




2. Hyperspectral approach

Conclusions and perspectives

® Spectra of phytoplankton absorption provide similar classification
as pigment-derived phytoplankton composition

® Preliminary results indicate significant potential of hyperspectral
optical approach for

® Discriminating different marine phytoplankton assemblages

® Monitoring phytoplankton diversity in the ocean, especially
under non-bloom conditions which are the most challenging

® We are currently working to include a,,(A) and pigment data from
cruise ANT-26 onboard R/V Polarstern in the Atlantic Ocean

® Further explore the potential of the hyperspectral approach by
analyzing the R (A)
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